add "long full recoding" test
this will
- recode for \#steps \in [10, 20, 100]
- at t = 0, k random shards among the n encoded will be selected at random
- at t \geq 1, all k shards will be used to recode k brand new shards
- make sure the last set of k shards recoded \#steps together can decode the data
(k, n) = (3, 5) and \#steps = 3
example with- (s_i)_{1 \leq i \leq k} are the k source shards
- (e_j)_{1 \leq j \leq n} are the n encoded shards
- (m_i)_{1 \leq i \leq k} are the k randomly selected shards
- (n_i)_{1 \leq i \leq k} are the shards after step 1
- (o_i)_{1 \leq i \leq k} are the shards after step 2
- (p_i)_{1 \leq i \leq k} are the shards after step 3
- the (p_i)_{1 \leq i \leq k} will be used for decoding
graph TD;
s1 --> e1; s1 --> e2; s1 --> e3; s1 --> e4; s1 --> e5;
s2 --> e1; s2 --> e2; s2 --> e3; s2 --> e4; s2 --> e5;
s3 --> e1; s3 --> e2; s3 --> e3; s3 --> e4; s3 --> e5;
e1 --> m1;
e3 --> m2;
e4 --> m3;
m1 --> n1; m1 --> n2; m1 --> n3;
m2 --> n1; m2 --> n2; m2 --> n3;
m3 --> n1; m3 --> n2; m3 --> n3;
n1 --> o1; n1 --> o2; n1 --> o3;
n2 --> o1; n2 --> o2; n2 --> o3;
n3 --> o1; n3 --> o2; n3 --> o3;
o1 --> p1; o1 --> p2; o1 --> p3;
o2 --> p1; o2 --> p2; o2 --> p3;
o3 --> p1; o3 --> p2; o3 --> p3;
Edited by STEVAN Antoine